Integration of transcriptomic point of departure metrics
Into the MoAviz visualization framework

M. B. Black?!, K. Bronson !, S. N. Pendse, J. Fitzpatrick, R. A. Clewell?, M. E. Andersen?, P. D. McMullen?
1 ScitoVation LLC, Durham, NC 27713 & 2 21st Century Tox Consulting, Chapel Hill, NC, USA
For more information on this project or other ScitoVation research initiatives, please email science@scitovation.com

’scitoVation

FIOMEERS IN CHEMICAL SAFETY ASSESSMENT

Abstract. Gene expression profiling is emerging as a viable way to evaluate mode of action and points of

departure and has the potential to drastically reduce testing costs and product development time. The first steps of
using transcriptional responses as a basis of safety assessment are being taken. However, several important
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considerations remain unresolved, including how to translate expression changes into adverse outcome pathways ! '_;‘ .
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