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Abstract. Gene expression profiling is emerging as a viable way to evaluate mode of action and points of 

departure and has the potential to drastically reduce testing costs and product development time. The first steps of 
using transcriptional responses as a basis of safety assessment are being taken. However, several important 
considerations remain unresolved, including how to translate expression changes into adverse outcome pathways 
or other definitions of mode of action, and the best manner with which to summarize gene expression data into a 
point of departure. Recently we developed an interactive browser application, MoAviz, to facilitate the examination 
of gene expression data across dose and time for mode of action studies of chemical perturbation for 204 
compounds (spanning 290 million gene expression change values). We used MoAviz to quantitatively compare 
pathway-level transcriptomic signatures across compounds with well-known modes of action, and across different 
model systems, providing the groundwork for performing “biological read-across” between compounds based on 
their transcriptomic fingerprints. We evaluated the extent to which gene expression changes from in-life exposures 
could be associated with mode of action by developing a novel similarity index—the Modified Jaccard Index 
(MJI)—that provides a quantitative description of genomic pathway similarity. While typical compound-compound 
similarity is low (MJI = 0.026), clustering of the TG-GATES compounds identifies groups of similar compounds. Some 
clusters aggregated compounds with known similar modes of action, including PPARα agonists (MJI = 0.330) and 
NSAIDs (MJI = 0.327). We continue to extend the MoAviz interface and database by incorporating whole 
transcriptome benchmark dose analyses and point of departure (POD) summary, including the command line 
modeling features of the BMDExpress2 software. This integration will include statistical pre-filtering of 
transcriptomic gene expression data, dose response modeling of individual genes, ontology over-representation of 
genes, and POD summary based on current proposed best practices for gene-based and pathway-based derivation 
of POD. By combining mode of action and POD tools in an interactive interface, MoAviz will facilitate the use of 
transcriptomics data over a variety of chemical safety contexts.

In 2019, we presented a visualization framework to facilitate the interpretation of 

differential gene expression and ontology enrichment for the determination of cellular modes 

of action (MoA) [1]. This tool presents ontology over-representation enrichment patterns in 

the form of interactive bubblemaps, allowing for interactive study of patterns of enrichment 

across dose and time. Statistical significance of enrichment is displayed by shading, and the 

number of differentially expressed genes found amongst a pathway’s elements is indicated 

by the size of nodes in the bubblemap. Edges in the bubblemap figure retain the hierarchical 

structure of the ontology. Individual genes resulting in significant enrichment of an ontology 

category can be listed so that discrete genes of interest may be identified.

In 2020 we are expanding this tool to include transcriptomic benchmark dose model 

fitting, pathway enrichment and methods to summarize gene based BMD values and 

pathway based BMD values to single values for use as points of departure (POD) [7]. 

Adding this capability to a MoA visualization framework will facilitate interpretation of 

transcriptomic PODs for use in evaluating compounds in risk assessment and regulatory 

decision making by providing biological functrional relevance to POD derivations.

Best fit models meeting QC metrics for acceptable model fit are 

used in a conventional ontology over representation analyses to 

define enriched cellular functional pathways. Values for pathway 

BMDU, BMD and BMDL values are then based on the median of 

the values for the genes that result in significant enrichment of a 

pathway. POD values are then derived using both individual gene 

based summary methods (e.g. 20 genes with lowest BMD), and 

pathway summaries (e.g. 20 pathways with lowest BMD) [3]. 

MoAviz is built around a database that 

captures transcriptomic data (e.g., RMA 

normalized expression, RNA-Seq count 

tables) providing the inputs for both 

differential gene expression, and BMD 

model fitting and POD summary. The BMD 

model fits, pathway enrichment and POD 

values are captured in the database to 

provide inputs for a visualization toolkit to 

display bubblemaps, BMD summary data 

and comparative POD plots. This database 

also allows for re-analyses functions in the 

event ontology information is updated, or 

alternative model fitting or POD summary 

algorithms are to be explored. And it 

provides a means for comparative analyses 

of different dose response experiments.

The BMD pipeline process begins with normalized, Log2 transformed gene or probe 

expression values. These data are used in BMDExpress2 command line analyses to fit dose 

response models to individual microarray probes or genes from RNA-Seq experiments, 

followed by statistical analyses of fitted dose response models for the selection of a single 

overall best fit model for each probe or gene [5,6,7]. 

Dynamic visuals and report summaries

Output Panel Mockup. The figure is a conceptualized mockup of our output panel using in-house data from 

Affymetrix microarray and RNA-Seq experiments. Our visualization toolbox presents QC data analyses at various steps 

along the analysis pipeline as well as summary data and results. We use standard statistical tools like Principle 

component analyses (A) to assess samples and overall experimental results. Clustering tools and heat maps show the 

pattern of differential expression changes across the dose response (B). Determination of signal in the dataset (C), as a 

pre-requisite to BMD model fitting, includes the tools built into BMDExpress (ANOVA, Williams trend test) as well as the 

results of our detailed differential gene expression analyses (using LIMMA for microarray data, and DESeq2 for RNA-

Seq count data). Our proposed standard BMD model fitting uses 7 models and the summary of overall best model fits is 

displayed post analyses as a bar graph (D). Finally, we present POD summaries derived from gene based and pathway 

based summary algorithms in a comparative plot (E) using proposed best practices.
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